How do you find the integral #intx^2/((x^2+2)^(3/2))dx# ?
1 Answer
Aug 29, 2014
#=1/2*x/sqrt(2+x^2)+c# , where#c# is a constantExplanation :
#=intx^2/((x^2+2)^(3/2))dx#
#=intx^2/(x^3(1+2/x^2)^(3/2))dx#
#=int1/(x(1+2/x^2)^(3/2))dx# Using Integration by Substitution,
let's assume
#2/x^2=t# then
#-4/xdx=dt#
#=int-dt/(4(1+t)^(3/2))#
#=-1/4int(1+t)^(-3/2)dt#
#=-1/4*((1+t)^(-1/2))/(-1/2)#
#=1/2*1/sqrt(1+t)+c# , where#c# is a constantSubstituting
#t# back,
#=1/2*1/sqrt(1+2/x^2)+c# , where#c# is a constant
#=1/2*x/sqrt(2+x^2)+c# , where#c# is a constant