How do you find the integral #intx^2/((x^2+2)^(3/2))dx# ?

1 Answer
Aug 29, 2014

#=1/2*x/sqrt(2+x^2)+c#, where #c# is a constant

Explanation :

#=intx^2/((x^2+2)^(3/2))dx#

#=intx^2/(x^3(1+2/x^2)^(3/2))dx#

#=int1/(x(1+2/x^2)^(3/2))dx#

Using Integration by Substitution,

let's assume #2/x^2=t#

then #-4/xdx=dt#

#=int-dt/(4(1+t)^(3/2))#

#=-1/4int(1+t)^(-3/2)dt#

#=-1/4*((1+t)^(-1/2))/(-1/2)#

#=1/2*1/sqrt(1+t)+c#, where #c# is a constant

Substituting #t# back,

#=1/2*1/sqrt(1+2/x^2)+c#, where #c# is a constant

#=1/2*x/sqrt(2+x^2)+c#, where #c# is a constant