How do you find the integral #intx/(sqrt(x^2+x+1))dx# ?
1 Answer
May 22, 2018
Use the substitution
Explanation:
Let
#I=intx/sqrt(x^2+x+1)dx#
Complete the square in the denominator:
#I=int(2x)/sqrt((2x+1)^2+3)dx#
Apply the substitution
#I=int(sqrt3tantheta-1)/(sqrt3sectheta)(sqrt3/2sec^2thetad theta)#
Simplify:
#I=1/2int(sqrt3secthetatantheta-sectheta)d theta#
Integrate term by term:
#I=1/2{sqrt3sectheta-ln|sectheta+tantheta|}+C#
Reverse the substitution:
#I=1/2sqrt((2x+1)^2+3)-1/2ln|2x+1+sqrt((2x+1)^2+3)|+C#