How do you simplify cot4theta-cos2thetacot4θcos2θ to trigonometric functions of a unit thetaθ?

1 Answer
Dec 7, 2015

Use the double angle formulas.

Explanation:

The double angle formulas are given as;

sin(2theta) = 2sin(theta) cos(theta)sin(2θ)=2sin(θ)cos(θ)
cos(2theta) = cos^2(theta)-sin^2(theta) = 2cos^2(theta)-1 = 1-2sin^2(theta)cos(2θ)=cos2(θ)sin2(θ)=2cos2(θ)1=12sin2(θ)
tan(2theta) = (2tan(theta))/(1-tan^2(theta))tan(2θ)=2tan(θ)1tan2(θ)

Notice that the double angle formulas reduce the term inside the trig function by half. If we apply the appropriate double angle formula to our function, we get;

cot(4theta)-cos(2theta)cot(4θ)cos(2θ)

=1/tan(4theta) - (cos^2(theta)-sin^2(theta))=1tan(4θ)(cos2(θ)sin2(θ))

=(1-tan^2(2theta))/(2tan(2theta))-cos^2(theta)+sin^2(theta)=1tan2(2θ)2tan(2θ)cos2(θ)+sin2(θ)

Use the double angle formula again on the tantan terms to get everything in terms of thetaθ.

(1-((2tan(theta))/(1-tan^2(theta)))^2)/(2((2tan(theta))/(1-tan^2(theta))))-cos^2(theta)+sin^2(theta)1(2tan(θ)1tan2(θ))22(2tan(θ)1tan2(θ))cos2(θ)+sin2(θ)

After some simplification, we get;

(1-tan^2(theta))/(4tan(theta)) - tan(theta)/(1-tan^2(theta))-cos^2(theta) + sin^2(theta)1tan2(θ)4tan(θ)tan(θ)1tan2(θ)cos2(θ)+sin2(θ)