How do you factor 27a^3-64b^3?

1 Answer
Jan 8, 2016

27a^3-64b^3=(3a-4b)(9a^2+12ab+16b^2)

Explanation:

Remembering that:

a^3-b^3=(a-b)(a^2+ab+b^2)

we can try to write

27a^3-64b^3

like a difference of cubes

27a^3-64b^3=3^3a^3-2^6b^3=3^3a^3-(2^2)^3b^3=
(3a)^3-4^3b^3=(3a)^3-(4b)^3

Now we can apply the rule:

27a^3-64b^3=(3a)^3-(4b)^3=
=(3a-4b)((3a)^2+12ab+(4b)^2)
=(3a-4b)(9a^2+12ab+16b^2)