How do you integrate int sqrt(3(1-x^2))dx using trigonometric substitution?

1 Answer
Apr 5, 2016

int sqrt(3(1-x^2)) dx=sqrt3/4sin2theta+sqrt3/2 theta +C

Explanation:

x=sintheta, dx=cos theta d theta

intsqrt(3(1-sin^2theta))*cos theta d theta=intsqrt(3(cos^2theta)) cos theta d theta

=intsqrt3 cos theta cos theta d theta

=sqrt 3intcos^2 theta d theta

=sqrt3 int1/2 (cos2 theta+1) d theta

=sqrt3/2 int (cos2 theta+1) d theta

=sqrt3/2 [1/2 sin2theta+theta]

=sqrt3/4sin2theta+sqrt3/2 theta +C