How do you find the product of (2h+3)(2h^2+3h+4)?

2 Answers
Sep 7, 2016

4h^3+12h^2+17h+12

Explanation:

Each term in the 2nd bracket must be multiplied by each term in the 1st bracket.

The following shows how this may be done.

(color(red)(2h+3))(2h^2+3h+4)

=color(red)(2h)(2h^2+3h+4)color(red)(+3)(2h^2+3h+4)

now distribute each pair of brackets.

=4h^3+6h^2+8h+6h^2+9h+12

and collecting like terms gives.

=4h^3+(6h^2+6h^2)+(8h+9h)+12

=4h^3+12h^2+17h+12larr"result of product"

Sep 7, 2016

(2h+3)(2h^2+3h+4)=color(orange)(4h^3+12h^2+17h+12)

Explanation:

color(red)(""(2h+3))(2h^2+3h+4)

using the distributive property
color(white)("XXX")=color(red)(2h)(2h^2+3h+4)color(red)(+3)(2h^2+3h+4)

(no real change except color to see the separate terms more clearly)
color(white)("XXX")=color(blue)(2h(2h^2+3h+4))+color(green)(3(2h^2+3h+4)

expanding each term
color(white)("XXX")=color(blue)(4h^3+6h^2+8h)+color(green)(6h^2+9h+12)

grouping equal powers of the variable
color(white)("XXX")=color(blue)(4h^3)+(color(blue)(6h^2)+color(green)(6h^2))+(color(blue)(8h)+color(green)(9h))+(color(green)(12))

Adding together equal powers of the variable
color(white)("XXX")=4h^3+12h^2+17h+12