How do you graph #r=2-2costheta#?

1 Answer
Nov 10, 2016

graph{(x^2+y^2+2x)^2-4x^2-4y^2=0 [-7.024, 5.46, -3.147, 3.097]}

#(x^2+y^2)^2+4x(x^2+y^2)-4y^2=0#

Explanation:

#costheta=x/r#

#r=2-2x/r\ \ =>\ \ r^2+2x=2r\ \ =>\ \ r^4+4x^2+4xr^2-4r^2=0#

#r^2=x^2+y^2#

#(x^2+y^2)^2+cancel(4x^2)+4x(x^2+y^2)-cancel(4x^2)-4y^2=0#

To drow the graph observe

  • the graph is simmetric over #theta# so over x axis
  • for #theta=0, r=0# so the point #(0;0)\ \ #belongs to the graph
  • for #theta=-pi, r=4# so the point #(-4;0)\ \ #belongs to the graph
  • for #theta=+-pi/2, r=2# so the point #(0;+-2)\ \ #belongs to the graph
  • #r^2-2r+2x=0, => r=1+-sqrt(1-2x)# so #x=1/2, r=1, y=sqrt(r^2-x^2)=+-sqrt3/2# is an extrem point
  • Using implicit differentiation on the curve equation with some calculus one can get that #y'(x)=0# only when #(x+1)r^2+2x^2=0# and using #r=1+-sqrt(1-2x)#

#(x+1)(1+1-2x+-2sqrt(1-2x))+2x^2=0#
#2(x+1)(1-x+-sqrt(1-2x))+2x^2=0#
#(1-x^2)+-(x+1)sqrt(1-2x)+x^2=0#
#sqrt(1-2x)=1/(x+1)#
#(1-2x)(x+1)^2=1#
#x^2+2x+1-2x^3-4x^2-2x=1#
#2x^3+3x^2=0#
#x=-3/2 (=>r=3)# or #x=0#

The graph has horizontal tangent in #(0;0)# and in #(-3/2;+-3sqrt3/2)#

Alternatively one can implicitly differentiate #r^2+2x=2r#
using that #(r^2)'=2x+2yy'# and #r'=(x+yy')/r# so
#r(x+1)-x=(1-r)yy'\ \ \ =>\ \ \ y'=0# only when #r=x/(x+1)# that again is satisfied #x=0# or #x=-3/2#