Question #21463

2 Answers
Nov 30, 2016

For 0<=theta<2pi, theta = pi/5, (5pi)/6, (3pi)/2

Explanation:

cos^2theta-sin^2theta=sintheta

Use the trig identity sin^2theta + cos^2theta =1
=> cos^2theta=1-sin^2theta

Substitute for cos^2theta

1-sin^2theta-sin^2theta=sintheta

-2sin^2theta +1=sintheta

0=2sin^2theta+sintheta-1

Factor

(2sintheta-1)(sintheta+1)=0

Set each factor equal to zero and solve.

2sintheta - 1 =0 color(white)(aaa)sintheta+1=0

sintheta=1/2 color(white)(aaa)sintheta=-1

For 0<=theta<2pi, use unit circle to find

theta =pi/6, (5pi)/6color(white)(aaa)theta =(3pi)/2

Nov 30, 2016

cos^2theta-sin^2theta=sintheta

=>cos2theta=cos(pi/2-theta)

2theta=2npi±(pi/2-theta)," where "n in ZZ

When 2theta=2npi+(pi/2-theta)

=>3theta=(4n+1)pi/2

=>theta=(4n+1)pi/6

Again when

2theta=2npi-(pi/2-theta)

=>2theta=2npi-pi/2+theta

=>theta=(4n-1)pi/2