How do you multiply (7n^2+8n+7)(7n^2+n-5)(7n2+8n+7)(7n2+n5)?

1 Answer
Feb 28, 2017

49n^4 +63n^3 + 22n^2 = 33n - 3549n4+63n3+22n2=33n35

Explanation:

Distribution-
(7n^2 + 8n + 7)(7n^2 + n - 5)(7n2+8n+7)(7n2+n5)

Multiply 7n^27n2, 8n8n, and 77 EACH by 7n^27n2, nn, and -55.

For 7n^27n2 :
7n^2*7n^2 = 49n^47n27n2=49n4
7n^2*n = 7n^37n2n=7n3
7n^2*-5 = -35n^27n25=35n2

do the same for 8n8n and 77
You should get:
(49n^4 + 7n^3 - 35n^2) + (56n^3 +8n^2 - 40n) +(49n^2 +7n - 35)(49n4+7n335n2)+(56n3+8n240n)+(49n2+7n35)

Now combine like terms-

49n^4 + 63n^3 + 22n^2 - 33n - 3549n4+63n3+22n233n35