How do you verify the identity #cosx-1=(cos2x-1)/(2(cosx+1))#?
1 Answer
Mar 30, 2017
Start with the right side:
#(cos2x-1) / (2(cosx+1))#
Use the identity
#(color(red)(2cos^2x-1)-1) / (2(cosx+1))#
#(2cos^2x - 2)/(2(cosx+1))#
Now divide both the numerator and denominator by 2:
#(cos^2x - 1) / (cosx + 1)#
Factor the numerator:
#((cosx+1)(cosx - 1)) / (cosx + 1)#
#((cancel(cosx+1))(cosx - 1)) / cancel(cosx+1)#
#cosx - 1#
Which is the left side.
Final Answer