How do you solve #2x^2-13x-7=0# using the quadratic formula?

1 Answer
Apr 16, 2017

#x=7# or #x=-1/2#

Explanation:

Let's begin with the quadratic formula: #x=(-b+- sqrt(b^2-4ac))/(2a#

In the equation #2x^2 - 13x - 7 = 0#, the a-value equals 2, the b-value equals -13, and the c-value is -7.

We substitute those numbers into our equation, and simplify to find our answer:

#x=(13+-sqrt(169-4(2)(-7)))/(2(2))# (Substitution)
#x=(13+- sqrt(225))/(4)# (Simplify)
#x=(13+-15)/4# (Simplify)
#x=(28)/4# or #x=(-2)/4# (Simplify)
#x=7# or #x=-1/2# (Simplify)