Evaluate the integral int \ sqrt(x-x^2)/x \ dx ?

2 Answers
Jul 21, 2017

int sqrt(x-x^2)/x "d"x =xsqrt(1/x-1)-arctan(sqrt(1/x-1))+C.

Explanation:

Note that the integrand requires x>0. For x>0, x=sqrt(x^2). Then rewrite the integrand as,

sqrt(x-x^2)/x=sqrt((x-x^2)/x^2).
sqrt(x-x^2)/x=sqrt(1/x-1).

Then denote the required integral by I.

I=int sqrt(1/x-1) "d"x.

Make the substitution u=sqrt(1/x-1). Then "d"x = -2x^2sqrt(1/x-1)"d"u. Then I is transformed to,

I = -2 int x^2 (1/x-1) "d"u.

From the definition of u, 1/x-1=u^2. Then x=1/(1+u^2), x^2=1/(1+u^2)^2. Then,

I = -2 int u^2/(u^2+1)^2 "d"u,
I = - int u * (2u)/(u^2+1)^2 "d"u.

Integration by parts states int f'(u)g(u) "d"u = f(u)g(u) - int f(u)g'(u)"d"u. Let f'(u)= 2u/(u^2+1)^2, g(u)=u.

A good general integration result to be aware of is, for n != -1,

int p'(x) [p(x)]^(n) "d"x = ([p(x)]^(n+1))/(n+1)+C.

This can be easily verified by differentiating the LHS.

Then as f'(u) is in this form we conclude f(u) = -1/(u^2+1). Then, by parts,

I = -(-1/(u^2+1)*u - int -1/(u^2+1)"d"u),
I = u/(u^2+1) - int 1/(u^2+1) "d"u,

Another general integration result to be aware of is int 1/(u^2+1) "d"u = arctan(u) + C. Then,

I = u/(u^2+1) - arctan(u)+C.

We know u=sqrt(1/x-1). Then u^2+1=1/x. We conclude,

I=xsqrt(1/x-1)-arctan(sqrt(1/x-1))+C.

Jul 22, 2017

int \ sqrt(x-x^2)/x \ dx = 1/2 arcsin(2x-1)+sqrt(x - x^2) + C

Explanation:

We seek:

I = int \ sqrt(x-x^2)/x \ dx

We can start by completing the square of the numerator to get:

x-x^2 = -(x^2-x)
" " = -{(x-1/2)^2-(1/2)^2}
" " = 1/4-(x-1/2)^2
" " = 1/4{1-(2x-1)^2}

So we can write:

I = int \ sqrt(1/4{1-(2x-1)^2})/x \ dx
\ \ = 1/2 \ int \ sqrt(1-(2x-1)^2)/x \ dx

Then comparing the numerator with 1-sin^2A we could try a trig substitution of the form:

sintheta = 2x-1 => cos theta (d theta)/dx = 2, and x=1/2(sin theta+1)

Substituting this into the integral and we get:

I = 1/2 \ int \ sqrt(1-sin^2 theta)/(1/2(sin theta+1)) \ 1/2cos theta \ d theta
\ \ = 1/2 \ int \ cos^2 theta/(sin theta+1) \ d theta
\ \ = 1/2 \ int \ (1-sin^2 theta)/(1+sin theta) \ d theta
\ \ = 1/2 \ int \ ((1+sin theta)(1-sin theta))/(1+sin theta) \ d theta
\ \ = 1/2 \ int \ 1-sin theta \ d theta
\ \ = 1/2 \ {theta+cos theta} + C

And from the substitution we have:

sin^2theta = (2x-1)^2 => cos^2 theta = 1 - (2x-1)^2
:. cos^2 theta = 1 - 4x^2+4x-1
" " = 4x - 4x^2

And so we can reverse the substitution to get:

I = 1/2 \ {arcsin(2x-1)+sqrt(4(x - x^2))} + C
\ \ = 1/2 arcsin(2x-1)+sqrt(x - x^2) + C