How do you simplify (sqrt3 - sqrt5) (sqrt5 + sqrt7)(35)(5+7)?

2 Answers
Aug 14, 2017

sqrt15+sqrt21-5-sqrt3515+21535

Explanation:

Use the foil method:
(a+b)(c+d)=ac+ad+bc+bd(a+b)(c+d)=ac+ad+bc+bd
sqrt15+sqrt21-5-sqrt3515+21535

Aug 14, 2017

-5+sqrt(15)+sqrt(21)-sqrt(35)5+15+2135

Explanation:

you can distribute out the brackets and simplify it
(sqrt(3)-sqrt(5))(sqrt(5)+sqrt(7))(35)(5+7)

=sqrt(3)*sqrt(5)+sqrt(3)*sqrt(7)-sqrt(5)*sqrt(5)-sqrt(5)sqrt(7)=35+375557

because
sqrt(a)*sqrt(b)=sqrt(ab)ab=ab

Our equation becomes
=sqrt(15)+sqrt(21)-sqrt(25)-sqrt(35)=15+212535

=-5+sqrt(15)+sqrt(21)-sqrt(35)=5+15+2135