How do you find the roots, real and imaginary, of y=-2x^2 + 7x +12(x/2-1)^2 using the quadratic formula?

1 Answer
Nov 26, 2017

x_1=5/2+sqrt23/2i~~2.5+2.4i
x_2=5/2-sqrt23/2i~~2.5-2.4i

When 5/2 in real and sqrt23/2 is imaginary for both

Explanation:

for the form of:
y=ax^2+bx+c

the quadratic formula is:
x_(1,2)=(-b+-sqrt{b^2-4*a*c})/(2*a)


y=-2x^2+7x+12(x/2-1)^2

=> y=-2x^2+7x+12(x^2/4+2*(x/2)*(-1)+1)

=> y=-2x^2+7x+12(x^2/4-x+1)

=> y=-2x^2+7x+3x^2-12x+12

=> y=x^2-5x+12

=>
a=1
b=-5
c=12

=>
x_(1,2)=(-b+-sqrt{b^2-4*a*c})/(2*a)=(-(-5)+-sqrt{25-4*1*12})/(2*1)=
=(5+-sqrt{25-48})/(2)=
=(5+-sqrt{-23})/(2)=
=(5+-sqrt23i)/(2)=
=>
x_1=(5+sqrt23i)/(2)=5/2+sqrt23/2i=2.5+sqrt23/2i~~2.5+2.4i
x_2=(5-sqrt23i)/(2)=5/2-sqrt23/2i=2.5-sqrt23/2i~~2.5-2.4i