for the form of:
#y=ax^2+bx+c#
the quadratic formula is:
#x_(1,2)=(-b+-sqrt{b^2-4*a*c})/(2*a)#
#y=-2x^2+7x+12(x/2-1)^2#
#=> y=-2x^2+7x+12(x^2/4+2*(x/2)*(-1)+1)#
#=> y=-2x^2+7x+12(x^2/4-x+1)#
#=> y=-2x^2+7x+3x^2-12x+12#
#=> y=x^2-5x+12#
#=>#
#a=1#
#b=-5#
#c=12#
#=>#
#x_(1,2)=(-b+-sqrt{b^2-4*a*c})/(2*a)=(-(-5)+-sqrt{25-4*1*12})/(2*1)=#
#=(5+-sqrt{25-48})/(2)=#
#=(5+-sqrt{-23})/(2)=#
#=(5+-sqrt23i)/(2)=#
#=>#
#x_1=(5+sqrt23i)/(2)=5/2+sqrt23/2i=2.5+sqrt23/2i~~2.5+2.4i#
#x_2=(5-sqrt23i)/(2)=5/2-sqrt23/2i=2.5-sqrt23/2i~~2.5-2.4i#