How do you find the roots, real and imaginary, of y= 5x^2-x-2x(x-1) y=5x2x2x(x1) using the quadratic formula?

1 Answer
Dec 27, 2017

x_1=0x1=0
x_2=-1/3x2=13

Explanation:

For the function in the form of:
ax^2+bx+c=0ax2+bx+c=0

Quadratic Formula:
x_{1,2}={-b+-sqrt{b^2-4ac}}/{2a}x1,2=b±b24ac2a


y=5x^2-x-2x(x-1)=5x^2-x-2x^2+2x=3x^2+xy=5x2x2x(x1)=5x2x2x2+2x=3x2+x

Let y=0y=0:
3x^2+1x+0=03x2+1x+0=0
where:
a=3a=3
b=1b=1
c=0c=0
=>
x_{1,2}={-b+-sqrt{b^2-4ac}}/{2a}={-1+-sqrt{1^2-4*3*0}}/{2*3}=x1,2=b±b24ac2a=1±1243023=
={-1+-sqrt{1}}/{6}={-1+-1}/{6}=1±16=1±16
=>
x_1={-1+1}/6=0/6=0x1=1+16=06=0
x_2={-1-1}/6={-2}/6=-1/3x2=116=26=13