# "The expression given matches the pattern of the formula for" #
# sin( x + y ). \ \ "Recall that formula:" #
# \qquad \qquad \qquad \qquad \quad \quad sin( x + y ) \ = \ sinx cosy + cos x siny. #
# "Now write it in the reverse direction:" #
# \qquad \qquad \qquad \qquad \quad \quad sinx cosy + cos x siny \ = \ sin( x + y ). #
# "Now, if in the reverse direction of that formula, we let:" #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad x = 15^@ \qquad "and" \qquad y = 75^@; #
# "we get:" #
# \qquad \qquad \quad sin15^@ cos75^@ + cos 15^@ sin75^@ \ = \ sin( 15^@ + 75^@ ). #
# "Thus:" #
# \qquad \qquad \quad sin15^@ cos75^@ + cos 15^@ sin75^@ \ = \ sin( 90^@ ) \ = \ 1. #
# "So we have the following simplification result:" #
# \qquad \qquad \qquad \qquad \quad sin15^@ cos75^@ + cos 15^@ sin75^@ \ = \ 1. #