What is the arc length of #f(x)= e^(4x-1) # on #x in [2,4] #?
1 Answer
Mar 15, 2018
Explanation:
#f(x)=e^(4x-1)#
#f'(x)=4e^(4x-1)#
Arc length is given by:
#L=int_2^4sqrt(1+(4e^(4x-1))^2)dx#
Rearrange:
#L=int_2^4(4e^(4x-1))sqrt(1+(4e^(4x-1))^-2)dx#
For
#L=4int_2^4e^(4x-1){sum_(n=0)^oo((1/2),(n))(4e^(4x-1))^(-2n)}dx#
Simplify:
#L=4sum_(n=0)^oo((1/2),(n))1/16^nint_2^4e^((1-2n)(4x-1))dx#
Integrate directly:
#L=4sum_(n=0)^oo((1/2),(n))1/16^n[e^((1-2n)(4x-1))]_2^4/(4(1-2n))#
Insert the limits of integration:
#L=sum_(n=0)^oo((1/2),(n))1/16^n(e^(15(1-2n))-e^(7(1-2n)))/(1-2n)#