What is the arclength of #f(x)=3x^2-x+4# on #x in [2,3]#?
1 Answer
Mar 17, 2018
Explanation:
#f(x)=3x^2−x+4#
#f'(x)=6x−1#
Arclength is given by:
#L=int_2^3sqrt(1+(6x-1)^2)dx#
Apply the substitution
#L=1/6intsec^3thetad theta#
This is a known integral:
#L=1/12[secthetatantheta+ln|sectheta+tantheta|]#
Reverse the substitution:
#L=1/12[(6x-1)sqrt(1+(6x-1)^2)+ln|(6x-1)+sqrt(1+(6x-1)^2)|]_2^3#
Hence
#L=1/12(17sqrt290-11sqrt122)+1/12ln((17+sqrt290)/(11+sqrt122))#