How do you integrate int e^(2x)/sqrt(-e^(2x) -25)dx using trigonometric substitution?

1 Answer
Apr 9, 2018

color(red)(-sqrt(-e^(2x)-25)+C

Explanation:

First factor out i from the root.

inte^(2x)/sqrt(-e^(2x)-25)dx

inte^(2x)/sqrt(-1(e^(2x)+25))dx

inte^(2x)/(sqrt(-1)sqrt(e^(2x)+25))dx

1/iinte^(2x)/sqrt(e^(2x)+25)dx

-iinte^(2x)/sqrt(e^(2x)+25)dx

Now we can perform trig substitution.

It's important to recognize:

e^(2x)=e^x*e^x

Let

tantheta=e^x/5

e^x=5tantheta

e^x*dx=5sec^2theta* d theta

sectheta=sqrt(e^(2x)+25)/5

5sectheta=sqrt(e^(2x)+25)

Substituting, we get:

-iint(5tantheta)/(5sectheta)5sec^2theta *d theta

-iint5tanthetasectheta*d theta

Integrating gives us:

-i[5sectheta]+C

-i[sqrt(e^(2x)+25)]+C

color(red)(-sqrt(-e^(2x)-25)+C