How do you solve 10/(x^2-25) - 1/10 = 1/(x - 5)10x225110=1x5?

1 Answer
Apr 15, 2018

x_1=5x1=5
x_2=-15x2=15

Explanation:

x^2-25=(x-5)*(x+5) x225=(x5)(x+5) so we have

10/((x+5)*(x-5))-1/10=1/(x-5)10(x+5)(x5)110=1x5

multiply both sides by 10(x+5)(x-5)10(x+5)(x5)

10(x+5)(x-5)10/[(x+5)(x-5)]-10(x+5)(x-5)1/10=10(x+5)(x-5)1/(x-5)10(x+5)(x5)10(x+5)(x5)10(x+5)(x5)110=10(x+5)(x5)1x5

10color(red)cancel(x+5)color(red)cancel(x-5)10/[color(red)cancel(x+5)color(red)cancel(x-5)]-color(blue)cancel10(x+5)(x-5)1/color(blue)cancel10=10(x+5)color(green)cancel(x-5)1/color(green)cancel(x-5)

100-(x^2-25)=10x+50

100-x^2+25-10x-50=0

-x^2-10x+75=0

x^2+10x-75=0

now use the formula x_(1//2)=(-b+-sqrt(b^2-4ac))/(2a)
a=1
b=10
c=-75

x_(1//2)=(-10+-sqrt(100-4(-75)))/(2)
x_(1//2)=(-10+-sqrt(400))/(2)
x_(1//2)=(-10+-20)/2
x_1=(-10+20)/2=10/2=5
x_2=(-10-20)/2=-30/2=-15