x^2-25=(x-5)*(x+5) x2−25=(x−5)⋅(x+5) so we have
10/((x+5)*(x-5))-1/10=1/(x-5)10(x+5)⋅(x−5)−110=1x−5
multiply both sides by 10(x+5)(x-5)10(x+5)(x−5)
10(x+5)(x-5)10/[(x+5)(x-5)]-10(x+5)(x-5)1/10=10(x+5)(x-5)1/(x-5)10(x+5)(x−5)10(x+5)(x−5)−10(x+5)(x−5)110=10(x+5)(x−5)1x−5
10color(red)cancel(x+5)color(red)cancel(x-5)10/[color(red)cancel(x+5)color(red)cancel(x-5)]-color(blue)cancel10(x+5)(x-5)1/color(blue)cancel10=10(x+5)color(green)cancel(x-5)1/color(green)cancel(x-5)
100-(x^2-25)=10x+50
100-x^2+25-10x-50=0
-x^2-10x+75=0
x^2+10x-75=0
now use the formula x_(1//2)=(-b+-sqrt(b^2-4ac))/(2a)
a=1
b=10
c=-75
x_(1//2)=(-10+-sqrt(100-4(-75)))/(2)
x_(1//2)=(-10+-sqrt(400))/(2)
x_(1//2)=(-10+-20)/2
x_1=(-10+20)/2=10/2=5
x_2=(-10-20)/2=-30/2=-15