How do you find the derivative of y = cot5x + csc5x y=cot5x+csc5x?

1 Answer

-5csc 5x (cosec 5x-cot 5x)or -5 csc 5x × tan 5x/25csc5x(cosec5xcot5x)or5csc5x×tan5x2

Explanation:

Given y=cot 5x+csc 5xy=cot5x+csc5x
d/dx(cot x)=-csc^2 xddx(cotx)=csc2x
d/dx(csc x)=-csc x cot xddx(cscx)=cscxcotx

Now, By chain rule,
d/dx(cot 5x)=-5csc^2 5xddx(cot5x)=5csc25x
d/dx(csc 5x)=-5csc 5x cot 5xddx(csc5x)=5csc5xcot5x

Adding, we get,
-5csc 5x (cosec 5x-cot 5x)5csc5x(cosec5xcot5x) which is the answer.

Further simplifying,
csc 5x-cot 5x " as " tan (5x/2)csc5xcot5x as tan(5x2) by the identity csc x-cot x =tan (x/2)cscxcotx=tan(x2)
We get the answer as-5 csc 5x × tan 5x/25csc5x×tan5x2