How do you calculate the arc length of the curve #y=x^2# from #x=0# to #x=4#?
1 Answer
May 16, 2018
Use the arc length formula.
Explanation:
#y=x^2#
#y'=2x#
Arc length is given by:
#L=int_0^4sqrt(1+4x^2)dx#
Apply the substitution
#L=1/2intsec^3thetad theta#
This is a known integral:
#L=1/4[secthetatantheta+ln|sectheta+tantheta|]#
Reverse the substitution:
#L=1/4[2xsqrt(1+4x^2)+ln|2x+sqrt(1+4x^2)|]_0^4#
Hence
#L=2sqrt65+1/4ln(8+sqrt65)#