What is the arc length of #f(x)= (3x-2)^2 # on #x in [1,3] #?
1 Answer
May 25, 2018
Explanation:
#f(x)=(3x−2)^2#
#f'(x)=6x−4#
Arc length is given by:
#L=int_1^3sqrt(1+(6x-4)^2)dx#
Apply the substitution
#L=1/6int_2^14sqrt(1+u^2)du#
Apply the substitution
#L=1/6intsec^3thetad theta#
This is a known integral:
#L=1/12[secthetatantheta+ln|sectheta+tantheta|]#
Reverse the last substitution:
#L=1/12[usqrt(1+u^2)+ln|u+sqrt(1+u^2)|]_2^14#
Hence
#L=1/6(7sqrt197-sqrt5)+1/12ln((14+sqrt197)/(2sqrt5))#