What is the arc length of #f(x)= sqrt(5x+1) # on #x in [0,2]#?
1 Answer
Explanation:
#f(x)=sqrt(5x+1)#
#f'(x)=5/(2sqrt(5x+1))#
Arc length is given by:
#L=int_0^2sqrt(1+25/(4(5x+1)))dx#
Apply the substitution
#L=1/5int_1^11sqrt(1+25/(4u))du#
Rearrange:
#L=1/5int_1^11sqrt(4u+25)/(2sqrtu)du#
Apply the substitution
#L=1/5int_1^sqrt11sqrt(4v^2+25)dv#
Apply the substitution
#L=5/2intsec^3thetad theta#
This is a known integral. If you do not have it memorized look it up in a table of integrals or apply integration by parts:
#L=5/4[secthetatantheta+ln|sectheta+tantheta|]#
Reverse the last substitution:
#L=[1/10vsqrt(4v^2+25)+5/4ln|2v+sqrt(4v^2+25)|]_1^sqrt11#
Insert the limits of integration:
#L=1/10(sqrt759-sqrt29)+5/4ln((2sqrt11+sqrt69)/(2+sqrt29))#