How do you integrate #int (x^2-8x+21)^(3/2)# using trig substitutions?

1 Answer
Jun 3, 2018

Use the substitution #x-4=sqrt5tantheta# then apply integration by parts.

Explanation:

Let

#I=int(x^2−8x+21)^(3/2)dx#

Complete the square:

#I=int((x-4)^2+5)^(3/2)dx#

Apply the substitution #x-4=sqrt5tantheta#:

#I=25intsec^5thetad theta#

Apply the integration by parts:

#u(theta)=sec^3theta#, #u'(theta)=3sec^3thetatantheta#
#v'(theta)=sec^2theta#, #v(theta)=tantheta#

Hence:

#intsec^5thetad theta=sec^3thetatantheta-3intsec^3thetatan^2thetad theta#

Rearrange:

#intsec^5thetad theta=1/4sec^3thetatantheta+3/4intsec^3thetad theta#

Similarly:

#intsec^3thetad theta=1/2secthetatantheta+1/2ln|sectheta+tantheta|+C#

Hence

#I=25{1/4sec^3thetatantheta+3/8secthetatantheta+3/8ln|sectheta+tantheta|}+C#

Reverse the substitution:

#I=1/8(x-4)(2x^2-16x+57)sqrt(x^2-8x+21)+75/8ln|x-4+sqrt(x^2-8x+21)|+C#