How do you integrate int x sqrt( 3x^2 - 18x + 20 )dx∫x√3x2−18x+20dx using trigonometric substitution?
2 Answers
Use the substitutions
Explanation:
Let
I=intxsqrt(3x^2-18x+20)dxI=∫x√3x2−18x+20dx
Complete the square in the square root:
I=intxsqrt(3(x-3)^2-7)dxI=∫x√3(x−3)2−7dx
Apply the substitution
I=int(sqrt(7/3)u+3)(sqrt7sqrt(u^2-1))(sqrt(7/3)d theta)I=∫(√73u+3)(√7√u2−1)(√73dθ)
Integration is distributive:
I=(7sqrt7)/3intusqrt(u^2-1)du+7sqrt3intsqrt(u^2-1)duI=7√73∫u√u2−1du+7√3∫√u2−1du
The first integral is trivial. For the second apply the substitution
I=(7sqrt7)/9(u^2-1)^(3/2)+7sqrt3intsecthetatan^2thetad thetaI=7√79(u2−1)32+7√3∫secθtan2θdθ
Since
I=(7sqrt7)/9(u^2-1)^(3/2)+7sqrt3int(sec^3theta-sectheta)d thetaI=7√79(u2−1)32+7√3∫(sec3θ−secθ)dθ
These are known integrals:
I=(7sqrt7)/9(u^2-1)^(3/2)+7sqrt3{1/2(secthetatantheta+ln|sectheta+tantheta|)-ln|sectheta+tantheta|}+CI=7√79(u2−1)32+7√3{12(secθtanθ+ln|secθ+tanθ|)−ln|secθ+tanθ|}+C
Simplify:
I=(7sqrt7)/9(u^2-1)^(3/2)+(7sqrt3)/2(secthetatantheta-ln|sectheta+tantheta|)+CI=7√79(u2−1)32+7√32(secθtanθ−ln|secθ+tanθ|)+C
Reverse the last substitution:
I=(7sqrt7)/9(u^2-1)^(3/2)+(7sqrt3)/2(usqrt(u^2-1)-ln|u+sqrt(u^2-1)|)+CI=7√79(u2−1)32+7√32(u√u2−1−ln∣∣u+√u2−1∣∣)+C
Simplify:
I=7/18(2sqrt7(u^2-1)+9sqrt3u)sqrt(u^2-1)-(7sqrt3)/2ln|u+sqrt(u^2-1)|+CI=718(2√7(u2−1)+9√3u)√u2−1−7√32ln∣∣u+√u2−1∣∣+C
Rewrite in terms of
I=1/18(2(7u^2-7)+9sqrt3(sqrt7u))sqrt(7u^2-7)-(7sqrt3)/2ln|sqrt7u+sqrt(7u^2-7)|+CI=118(2(7u2−7)+9√3(√7u))√7u2−7−7√32ln∣∣√7u+√7u2−7∣∣+C
Reverse the first substitution:
I=1/18(2(3x^2-18x+20)+27(x-3))sqrt(3x^2-18x+20)-(7sqrt3)/2ln|sqrt3(x-3)+sqrt(3x^2-18x+20)|+CI=118(2(3x2−18x+20)+27(x−3))√3x2−18x+20−7√32ln∣∣√3(x−3)+√3x2−18x+20∣∣+C
Simplify:
I=1/18(6x^2-9x-41)sqrt(3x^2-18x+20)-(7sqrt3)/2ln|sqrt3(x-3)+sqrt(3x^2-18x+20)|+CI=118(6x2−9x−41)√3x2−18x+20−7√32ln∣∣√3(x−3)+√3x2−18x+20∣∣+C
Explanation:
We know that,
NOTE :
Here,
=
Now,
Again,
Subst.
Hence,