How do you integrate int x sqrt( 3x^2 - 18x + 20 )dxx3x218x+20dx using trigonometric substitution?

2 Answers
Jun 6, 2018

Use the substitutions sqrt3(x-3)=sqrt7u3(x3)=7u and u=secthetau=secθ.

Explanation:

Let

I=intxsqrt(3x^2-18x+20)dxI=x3x218x+20dx

Complete the square in the square root:

I=intxsqrt(3(x-3)^2-7)dxI=x3(x3)27dx

Apply the substitution sqrt3(x-3)=sqrt7u3(x3)=7u:

I=int(sqrt(7/3)u+3)(sqrt7sqrt(u^2-1))(sqrt(7/3)d theta)I=(73u+3)(7u21)(73dθ)

Integration is distributive:

I=(7sqrt7)/3intusqrt(u^2-1)du+7sqrt3intsqrt(u^2-1)duI=773uu21du+73u21du

The first integral is trivial. For the second apply the substitution u=secthetau=secθ:

I=(7sqrt7)/9(u^2-1)^(3/2)+7sqrt3intsecthetatan^2thetad thetaI=779(u21)32+73secθtan2θdθ

Since tan^2theta=sec^2theta-1tan2θ=sec2θ1:

I=(7sqrt7)/9(u^2-1)^(3/2)+7sqrt3int(sec^3theta-sectheta)d thetaI=779(u21)32+73(sec3θsecθ)dθ

These are known integrals:

I=(7sqrt7)/9(u^2-1)^(3/2)+7sqrt3{1/2(secthetatantheta+ln|sectheta+tantheta|)-ln|sectheta+tantheta|}+CI=779(u21)32+73{12(secθtanθ+ln|secθ+tanθ|)ln|secθ+tanθ|}+C

Simplify:

I=(7sqrt7)/9(u^2-1)^(3/2)+(7sqrt3)/2(secthetatantheta-ln|sectheta+tantheta|)+CI=779(u21)32+732(secθtanθln|secθ+tanθ|)+C

Reverse the last substitution:

I=(7sqrt7)/9(u^2-1)^(3/2)+(7sqrt3)/2(usqrt(u^2-1)-ln|u+sqrt(u^2-1)|)+CI=779(u21)32+732(uu21lnu+u21)+C

Simplify:

I=7/18(2sqrt7(u^2-1)+9sqrt3u)sqrt(u^2-1)-(7sqrt3)/2ln|u+sqrt(u^2-1)|+CI=718(27(u21)+93u)u21732lnu+u21+C

Rewrite in terms of sqrt7u7u and rescale C:

I=1/18(2(7u^2-7)+9sqrt3(sqrt7u))sqrt(7u^2-7)-(7sqrt3)/2ln|sqrt7u+sqrt(7u^2-7)|+CI=118(2(7u27)+93(7u))7u27732ln7u+7u27+C

Reverse the first substitution:

I=1/18(2(3x^2-18x+20)+27(x-3))sqrt(3x^2-18x+20)-(7sqrt3)/2ln|sqrt3(x-3)+sqrt(3x^2-18x+20)|+CI=118(2(3x218x+20)+27(x3))3x218x+20732ln3(x3)+3x218x+20+C

Simplify:

I=1/18(6x^2-9x-41)sqrt(3x^2-18x+20)-(7sqrt3)/2ln|sqrt3(x-3)+sqrt(3x^2-18x+20)|+CI=118(6x29x41)3x218x+20732ln3(x3)+3x218x+20+C

Jun 6, 2018

I=1/9(3x^2-18x+20)^(3/2)+(3(x-3))/2sqrt(3x^2-18x+20)-(7sqrt3)/2ln|sqrt3(x-3)+sqrt(3x^2-18x+20)|+CI=19(3x218x+20)32+3(x3)23x218x+20732ln3(x3)+3x218x+20+C

Explanation:

We know that,

color(red)((1)intsqrt(x^2-a^2)dx=x/2sqrt(x^2-a^2)-a^2/2ln|x+sqrt(x^2- a^2)|+c(1)x2a2dx=x2x2a2a22lnx+x2a2+c

color(blue)((2)int[f(x)]^n f'(x)dx=[f(x)]^(n+1)/(n+1)+c

NOTE : color(violet)(ul{f(x)=3x^2-18x+20=>f'(x)=6x-18,

color(violet)(ul(so,take,x=1/6(6x)=1/6(6x-18+18)=[1/6(6x- 18)+3]

Here,

I=intxsqrt(3x^2-18x+20)dx

I=int[1/6(6x-18)+3]sqrt(3x^2-18x+20)dx

=int1/6(6x-18)sqrt(3x^2-18x+20)dx+3intsqrt(3x^2-18x+20)dx

I=I_1+I_2

Now,

I_1=int1/6(6x-18)sqrt(3x^2-18x+20)dx

=1/6color(blue)(int[3x^2-18x+20]^(1/2)d/(dx)(3x^2-18x+20)dx)

=1/6color(blue)((3x^2-18x+20)^(3/2)/(3/2)+c_1...toApply(2)

I_1=1/9(3x^2-18x+20)^(3/2)+c_1

Again,

I_2=3intsqrt(3x^2-18x+20)dx

=3intsqrt(3x^2-18x+27-7)dx

=3intsqrt(3(x^2-6x+9)-7)dx

I_2=3intsqrt(3(x-3)^2-(sqrt(7))^2)dx

Subst. sqrt3(x-3)=u=>sqrt3dx=du=>dx=1/sqrt3du

I_2=3/sqrt3color(red)(intsqrt(u^2-(sqrt7)^2)du...toApply(1)

=sqrt3color(red)({u/2sqrt(u^2-(sqrt7)^2)-(sqrt7)^2/2ln|u+sqrt(u^2- (sqrt7)^2)|})+c_2

=sqrt3{sqrt3/2(x-3)sqrt(3(x-3)^2-(sqrt7)^2)-7/2ln|sqrt3(x- 3)+sqrt(3(x-3)^2-(sqrt7)^2)|}+c_2

I_2=(3(x-3))/2sqrt(3x^2-18x+20)-(7sqrt3)/2ln|sqrt3(x- 3)+sqrt(3x^2-18x+20)|+c_2

Hence, I=I_1+I_2=>

I=1/9(3x^2-18x+20)^(3/2)+(3(x-3))/2sqrt(3x^2- 18x+20)-(7sqrt3)/2ln|sqrt3(x-3)+sqrt(3x^2-18x+20)|+C