How do you integrate #int x sqrt( 3x^2 - 18x + 20 )dx# using trigonometric substitution?
2 Answers
Use the substitutions
Explanation:
Let
#I=intxsqrt(3x^2-18x+20)dx#
Complete the square in the square root:
#I=intxsqrt(3(x-3)^2-7)dx#
Apply the substitution
#I=int(sqrt(7/3)u+3)(sqrt7sqrt(u^2-1))(sqrt(7/3)d theta)#
Integration is distributive:
#I=(7sqrt7)/3intusqrt(u^2-1)du+7sqrt3intsqrt(u^2-1)du#
The first integral is trivial. For the second apply the substitution
#I=(7sqrt7)/9(u^2-1)^(3/2)+7sqrt3intsecthetatan^2thetad theta#
Since
#I=(7sqrt7)/9(u^2-1)^(3/2)+7sqrt3int(sec^3theta-sectheta)d theta#
These are known integrals:
#I=(7sqrt7)/9(u^2-1)^(3/2)+7sqrt3{1/2(secthetatantheta+ln|sectheta+tantheta|)-ln|sectheta+tantheta|}+C#
Simplify:
#I=(7sqrt7)/9(u^2-1)^(3/2)+(7sqrt3)/2(secthetatantheta-ln|sectheta+tantheta|)+C#
Reverse the last substitution:
#I=(7sqrt7)/9(u^2-1)^(3/2)+(7sqrt3)/2(usqrt(u^2-1)-ln|u+sqrt(u^2-1)|)+C#
Simplify:
#I=7/18(2sqrt7(u^2-1)+9sqrt3u)sqrt(u^2-1)-(7sqrt3)/2ln|u+sqrt(u^2-1)|+C#
Rewrite in terms of
#I=1/18(2(7u^2-7)+9sqrt3(sqrt7u))sqrt(7u^2-7)-(7sqrt3)/2ln|sqrt7u+sqrt(7u^2-7)|+C#
Reverse the first substitution:
#I=1/18(2(3x^2-18x+20)+27(x-3))sqrt(3x^2-18x+20)-(7sqrt3)/2ln|sqrt3(x-3)+sqrt(3x^2-18x+20)|+C#
Simplify:
#I=1/18(6x^2-9x-41)sqrt(3x^2-18x+20)-(7sqrt3)/2ln|sqrt3(x-3)+sqrt(3x^2-18x+20)|+C#
Explanation:
We know that,
NOTE :
Here,
=
Now,
Again,
Subst.
Hence,