What is the arclength of #f(x)=ln(x+3)# on #x in [2,3]#?
1 Answer
Jun 17, 2018
Explanation:
#f(x)=ln(x+3)#
#f'(x)=1/(x+3)#
Arclength is given by:
#L=int_2^3sqrt(1+1/(x+3)^2)dx#
Apply the substitution
#L=int_5^6sqrt(1+1/u^2)du#
For
#L=int_5^6sum_(n=0)^oo((1/2),(n))1/u^(2n)du#
Isolate the
#L=int_5^6du+sum_(n=1)^oo((1/2),(n))int_5^6 1/u^(2n)du#
Integrate directly:
#L=1+sum_(n=1)^oo((1/2),(n))[(-1)/((2n-1)u^(2n-1))]_5^6#
Simplify:
#L=1+sum_(n=1)^oo((1/2),(n))1/(2n-1)(1/5^(2n-1)-1/6^(2n-1))#