What is the arclength of #f(x)=x-sqrt(x+3)# on #x in [1,3]#?

1 Answer
Jun 21, 2018

#L=(4sqrt6-1)/(8sqrt2)sqrt((4sqrt6-1)^2+1)-35/8+1/(8sqrt2)ln((4sqrt6-1+sqrt((4sqrt6-1)^2+1))/(7+5sqrt2))# units.

Explanation:

#f(x)=x-sqrt(x+3)#

#f'(x)=1-1/(2sqrt(x+3))#

Arclength is given by:

#L=int_1^3sqrt(1+(1-1/(2sqrt(x+3)))^2)dx#

Apply the substitution #2sqrt(x+3)=u#:

#L=int_4^(2sqrt6)sqrt(1+(1-1/u)^2)(1/2udu)#

Simplify:

#L=1/2int_4^(2sqrt6)sqrt(2u^2-2u+1)du#

Complete the square in the square root:

#L=1/(2sqrt2)int_4^(2sqrt6)sqrt((2u-1)^2+1)du#

Apply the substitution #2u-1=tantheta#:

#L=1/(4sqrt2)intsec^3thetad theta#

This is a known integral. If you do not have it memorized apply integration by parts or look it up in a table of integrals:

#L=1/(8sqrt2)[secthetatantheta+ln|sectheta+tantheta|]#

Reverse the substitution:

#L=1/(8sqrt2)[(2u-1)sqrt((2u-1)^2+1)+ln|(2u-1)+sqrt((2u-1)^2+1)|]_4^(2sqrt6)#

Insert the limits of integration:

#L=(4sqrt6-1)/(8sqrt2)sqrt((4sqrt6-1)^2+1)-35/8+1/(8sqrt2)ln((4sqrt6-1+sqrt((4sqrt6-1)^2+1))/(7+5sqrt2))#