What is the arc length of #f(x)= 1/x # on #x in [1,2] #?
1 Answer
Jun 28, 2018
Explanation:
#f(x)=1/x#
#f'(x)=-1/x^2#
Arc length is given by:
#L=int_1^2sqrt(1+1/x^4)dx#
For
#L=int_1^2sum_(n=0)^oo((1/2),(n))1/x^(4n)dx#
Simplify:
#L=sum_(n=0)^oo((1/2),(n))int_1^2x^(-4n)dx#
Integrate directly:
#L=sum_(n=0)^oo((1/2),(n))[x^(1-4n)]_1^2/(1-4n)#
Isolate the
#L=1+sum_(n=1)^oo((1/2),(n))1/(4n-1)(1-1/2^(4n-1))#