For the integrand 1/(sqrt(3x-12sqrt(x)+29))1√3x−12√x+29, substitute
u=sqrt(x)u=√x and du=1/(2sqrt(x))dxdu=12√xdx
=2int(u/(sqrt(3u^2-12u+29)))du=2∫(u√3u2−12u+29)du
Completing the square, we get
=2int(u/(sqrt((sqrt(3)u-2sqrt(3))^2+17)))du=2∫⎛⎜
⎜
⎜
⎜⎝u√(√3u−2√3)2+17⎞⎟
⎟
⎟
⎟⎠du
Let s=sqrt(3)u-2sqrt(3)s=√3u−2√3 and ds=sqrt(3)duds=√3du
=2/sqrt(3) int ((s+2sqrt(3))/(sqrt(3)sqrt(s^2+17))ds)=2√3∫(s+2√3√3√s2+17ds)
Factor out the constant 1/sqrt(3)1√3
=2/3 int(s+2sqrt(3))/(sqrt(s^2+17)) ds=23∫s+2√3√s2+17ds
Next, substitute s=sqrt(17) tan(p)s=√17tan(p) and ds=sqrt(17)sec^2(p)dpds=√17sec2(p)dp
Then, sqrt(s^2+17)=sqrt(17tan^2(p)+17)=sqrt(17)sec(p)√s2+17=√17tan2(p)+17=√17sec(p) and p=tan^-1(s/sqrt(17))p=tan−1(s√17). This gives us
=(2sqrt(17))/3 int (sqrt(17)tan(p)+2sqrt(3)sec(p))/sqrt(17) dp=2√173∫√17tan(p)+2√3sec(p)√17dp
Factoring out 1/sqrt(17)1√17 gives
=2/3 int (sqrt(17)tan(p) + 2sqrt(3))sec(p) dp=23∫(√17tan(p)+2√3)sec(p)dp
=2/3 int (sqrt(17)tan(p)sec(p) + 2sqrt(3)sec(p)) dp=23∫(√17tan(p)sec(p)+2√3sec(p))dp
=(2sqrt(17))/3 int (sqrt(17)tan(p)sec(p))dp + 4/sqrt(3) int sec(p)) dp=2√173∫(√17tan(p)sec(p))dp+4√3∫sec(p))dp
Substitute w=sec(p)w=sec(p) and dw=tan(p)sec(p)dpdw=tan(p)sec(p)dp
=(2sqrt(17))/3 int 1dw + 4/sqrt(3) intsec(p)dp=2√173∫1dw+4√3∫sec(p)dp
=(2sqrt(17)w)/3+4/sqrt(3) int sec(p)dp=2√17w3+4√3∫sec(p)dp
=(4 ln(tan(p)+sec(p)))/sqrt(3) + (2sqrt(17)3)/3+C=4ln(tan(p)+sec(p))√3+2√1733+C
Backwards substituting all the variables eventually gives
=2/3(sqrt(3x-12sqrt(x)+29)+2sqrt(3) sinh^-1(sqrt(3/17)(sqrt(x)-2)))+C=23(√3x−12√x+29+2√3sinh−1(√317(√x−2)))+C