How do you write the expression as the sine, cosine, or tangent of the angle given cos45^circcos120^circ-sin45^circsin120^circcos45cos120sin45sin120?

2 Answers
Aug 11, 2018

cos165^@cos165

Explanation:

"using the "color(blue)"trigonometric identity"using the trigonometric identity

•color(white)(x)cos(x+y)=cosxcosy-sinxsinyxcos(x+y)=cosxcosysinxsiny

cos45cos120-sin45sin120" is the expansion of"cos45cos120sin45sin120 is the expansion of

cos(45+120)=cos165^@cos(45+120)=cos165

Aug 11, 2018

Please see below.

Explanation:

The question is not clear.So the answer is given for angle 165^circ165

We know that ,

color(red)(cosalphacosbeta-sinalphasinbeta=cos(alpha+beta)cosαcosβsinαsinβ=cos(α+β)

Substitute , alpha=45^circ and beta=120^circα=45andβ=120

cos45^circcos120^circ-sin45^circsin120^circcos45cos120sin45sin120=cos(45^circ+120^circ)cos(45+120)=cos165^circcos165

:.cos165^circ=cos45^circ cos120^circ-sin45^circsin120^circ

Similarly , color(red)( sin(alpha+beta)=sinalphacosbeta+cosalphasinbeta

sin165^circ=sin(45^circ+120^circ)=sin45^circ cos120^circ+cos45^circsin120^circ

Now , color(red)(tan(alpha+beta)=(tanalpha+tanbeta)/(1- tanalphatanbeta)

tan165^circ=tan(45^circ+120^circ)=(tan45^circ+tan120^circ)/(1-tan45^circtan120^circ)