How do you derive the quadratic formula?

1 Answer
Feb 17, 2016

See explanation...

Explanation:

Given ax^2+bx+c = 0ax2+bx+c=0 to solve.

Note that:

a(x+b/(2a))^2=a(x^2+b/ax+b^2/(4a^2))=ax^2+bx+b^2/(4a)a(x+b2a)2=a(x2+bax+b24a2)=ax2+bx+b24a

So:

0 = ax^2+bx+c = a(x+b/(2a))^2 + (c - b^2/(4a))0=ax2+bx+c=a(x+b2a)2+(cb24a)

Add b^2/(4a)-cb24ac to both ends and transpose to get:

a(x+b/(2a))^2 = b^2/(4a) - c=(b^2-4ac)/(4a)a(x+b2a)2=b24ac=b24ac4a

Divide both sides by aa to get:

(x+b/(2a))^2 = (b^2-4ac)/(4a^2)(x+b2a)2=b24ac4a2

Take the square root of both sides (allowing for either sign) to get:

x+b/(2a) = +-sqrt((b^2-4ac)/(4a^2)) =+-sqrt(b^2-4ac)/(2a)x+b2a=±b24ac4a2=±b24ac2a

Subtract b/(2a)b2a from both sides to get:

x = -b/(2a)+-sqrt(b^2-4ac)/(2a) = (-b+-sqrt(b^2-4ac))/(2a)x=b2a±b24ac2a=b±b24ac2a

Note that all of this is based on simple properties of arithmetic, so will work regardless of whether aa, bb and cc are integers, rational, irrational or even Complex numbers.