How do you derive the quadratic formula?
1 Answer
See explanation...
Explanation:
Given
Note that:
a(x+b/(2a))^2=a(x^2+b/ax+b^2/(4a^2))=ax^2+bx+b^2/(4a)a(x+b2a)2=a(x2+bax+b24a2)=ax2+bx+b24a
So:
0 = ax^2+bx+c = a(x+b/(2a))^2 + (c - b^2/(4a))0=ax2+bx+c=a(x+b2a)2+(c−b24a)
Add
a(x+b/(2a))^2 = b^2/(4a) - c=(b^2-4ac)/(4a)a(x+b2a)2=b24a−c=b2−4ac4a
Divide both sides by
(x+b/(2a))^2 = (b^2-4ac)/(4a^2)(x+b2a)2=b2−4ac4a2
Take the square root of both sides (allowing for either sign) to get:
x+b/(2a) = +-sqrt((b^2-4ac)/(4a^2)) =+-sqrt(b^2-4ac)/(2a)x+b2a=±√b2−4ac4a2=±√b2−4ac2a
Subtract
x = -b/(2a)+-sqrt(b^2-4ac)/(2a) = (-b+-sqrt(b^2-4ac))/(2a)x=−b2a±√b2−4ac2a=−b±√b2−4ac2a
Note that all of this is based on simple properties of arithmetic, so will work regardless of whether