Question #8f777

1 Answer

Set u=sqrtx>0 hence du=1/(2sqrtx)dx=>dx=2udu

Hence the integral becomes

int sqrtx/(sqrtx-3)dx=int 2*u^2/(u-3)du

Analyze 2u^2/(u-3) in partial fractions we get

int 2u^2/(u-3)du=int (2u+18/(u-3)+6)du= u^2+18ln(u-3)+6u+c=x+18*ln(sqrtx-3)+6sqrtx+c

Finally

int sqrtx/(sqrtx-3)dx=x+18*ln(sqrtx-3)+6sqrtx+c