Question #8f777 Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Konstantinos Michailidis May 28, 2016 Set u=sqrtx>0 hence du=1/(2sqrtx)dx=>dx=2udu Hence the integral becomes int sqrtx/(sqrtx-3)dx=int 2*u^2/(u-3)du Analyze 2u^2/(u-3) in partial fractions we get int 2u^2/(u-3)du=int (2u+18/(u-3)+6)du= u^2+18ln(u-3)+6u+c=x+18*ln(sqrtx-3)+6sqrtx+c Finally int sqrtx/(sqrtx-3)dx=x+18*ln(sqrtx-3)+6sqrtx+c Answer link Related questions How do you evaluate the integral inte^(4x) dx? How do you evaluate the integral inte^(-x) dx? How do you evaluate the integral int3^(x) dx? How do you evaluate the integral int3e^(x)-5e^(2x) dx? How do you evaluate the integral int10^(-x) dx? What is the integral of e^(x^3)? What is the integral of e^(0.5x)? What is the integral of e^(2x)? What is the integral of e^(7x)? What is the integral of 2e^(2x)? See all questions in Integrals of Exponential Functions Impact of this question 1505 views around the world You can reuse this answer Creative Commons License