Question #0973a

1 Answer
Feb 6, 2017

ln(2+x) = ln2 + sum_(n=0)^oo (-1)^n x^(n+1)/(2^(n+1)(n+1))ln(2+x)=ln2+n=0(1)nxn+12n+1(n+1)

Explanation:

Write the function as:

ln(2+x) = ln (2 (1+x/2)) = ln2 +ln(1+x/2)ln(2+x)=ln(2(1+x2))=ln2+ln(1+x2)

Now use the MacLaurin development of ln (1+x)ln(1+x), substituting x/2x2 to xx:

ln(1+x/2) = sum_(n=0)^oo (-1)^n (x/2)^(n+1)/(n+1) = sum_(n=0)^oo (-1)^n x^(n+1)/(2^(n+1)(n+1))ln(1+x2)=n=0(1)n(x2)n+1n+1=n=0(1)nxn+12n+1(n+1)

In conclusion:

ln(2+x) = ln2 + sum_(n=0)^oo (-1)^n x^(n+1)/(2^(n+1)(n+1))ln(2+x)=ln2+n=0(1)nxn+12n+1(n+1)