Write the following as product of trigonometric ratios?
(1) cos3phi-cos4phi-cos5phi+cos6phi
(2) sin2alpha+sin4alpha+sin6alpha
(3) sin5phi-sin6phi-sin7phi+sin8phi
(4) sin4beta-2cos^2(2beta)+1
(1)
(2)
(3)
(4)
1 Answer
(1)
(2)
(3)
(4)
Explanation:
(1)
=
(cos6phi-cos5phi)-(cos4phi-cos3phi)
using
2sin((11phi)/2)sin(phi/2)-2sin((7phi)/2)sin(phi/2) =
2sin(phi/2){sin((11phi)/2)-sin((7phi)/2)}
using
=
2sin(phi/2){2cos((18phi)/4)sin((4phi)/4)} =
color(blue)(4sin(phi/2)sinphicos((9phi)/2)
(2)
=
sin6alpha+sin2alpha+sin4alpha
Using
=
2sin3alphacos3alpha+2sin3alphacosalpha =
2sin3alpha(cos3alpha+cosalpha)
Using
2sin3alpha(2cos2alphacosalpha) =
color(blue)(4cosalphacos2alphasin3alpha)
(3)
=
sin8phi-sin7phi-(sin6phi-sin5phi) =
2cos((15phi)/2)sin(phi/2)-2cos((11phi)/2)sin(phi/2) =
2sin(phi/2){cos((15phi)/2)-cos((11phi)/2)} =
2sin(phi/2){2sin((15phi+11phi)/4)sin((15phi-11phi)/4)} =
color(blue)(4sin(phi/2)sinphisin((13phi)/2))
(4)
=
sin4beta-(2cos^2(2beta)-1)
Using
sin4beta-cos4beta and assin(pi/2-A)=cosA this is=
sin4beta-sin(pi/2-4beta) using identity in (1)=
2cos((4beta+pi/2-4beta)/2)sin((4beta-pi/2+4beta)/2) =
2cos(pi/4)sin(4beta-pi/4) =
2/sqrt2sin(4beta-pi/4) =
color(blue)(sqrt2sin(4beta-pi/4))