Write the following as product of trigonometric ratios?

(1) cos3phi-cos4phi-cos5phi+cos6phi
(2) sin2alpha+sin4alpha+sin6alpha
(3) sin5phi-sin6phi-sin7phi+sin8phi
(4) sin4beta-2cos^2(2beta)+1

1 Answer

(1) 4sin(phi/2)sinphicos((9phi)/2)
(2) 4cosalphacos2alphasin3alpha
(3) 4sin(phi/2)sinphisin((13phi)/2)
(4) sqrt2sin(4beta-pi/4)

Explanation:

(1) cos3phi-cos4phi-cos5phi+cos6phi

= (cos6phi-cos5phi)-(cos4phi-cos3phi)

using cosA-cosB=2sin((A+B)/2)sin((A-B)/2) the above is equal to

2sin((11phi)/2)sin(phi/2)-2sin((7phi)/2)sin(phi/2)

= 2sin(phi/2){sin((11phi)/2)-sin((7phi)/2)}

using sinA-sinB=2cos((A+B)/2)sin((A-B)/2) the above is equal to

= 2sin(phi/2){2cos((18phi)/4)sin((4phi)/4)}

= color(blue)(4sin(phi/2)sinphicos((9phi)/2)

(2) sin2alpha+sin4alpha+sin6alpha

= sin6alpha+sin2alpha+sin4alpha

Using sin2A=2sinAcosA and sinA+sinB=2sin((A+B)/2)cos((A-B)/2)

= 2sin3alphacos3alpha+2sin3alphacosalpha

= 2sin3alpha(cos3alpha+cosalpha)

Using cosA+cosB=2cos((A+B)/2)cos((A-B)/2), this is equal to

2sin3alpha(2cos2alphacosalpha)

= color(blue)(4cosalphacos2alphasin3alpha)

(3) sin5phi-sin6phi-sin7phi+sin8phi - use identities in (1) above

= sin8phi-sin7phi-(sin6phi-sin5phi)

= 2cos((15phi)/2)sin(phi/2)-2cos((11phi)/2)sin(phi/2)

= 2sin(phi/2){cos((15phi)/2)-cos((11phi)/2)}

= 2sin(phi/2){2sin((15phi+11phi)/4)sin((15phi-11phi)/4)}

= color(blue)(4sin(phi/2)sinphisin((13phi)/2))

(4) sin4beta-2cos^2(2beta)+1

= sin4beta-(2cos^2(2beta)-1)

Using sin2A=2sinAcosA and cos2A=2cos^2A-1, this is equal to

sin4beta-cos4beta and as sin(pi/2-A)=cosA this is

= sin4beta-sin(pi/2-4beta) using identity in (1)

= 2cos((4beta+pi/2-4beta)/2)sin((4beta-pi/2+4beta)/2)

= 2cos(pi/4)sin(4beta-pi/4)

= 2/sqrt2sin(4beta-pi/4)

= color(blue)(sqrt2sin(4beta-pi/4))