Prove that cos(y-pi)+sin(y+pi/3)=0?

2 Answers
Apr 18, 2016

Sorry cos(y-pi)+sin(y+pi/3)!=0, but cos(y-pi)+sin(y+pi/3)=-cosy+1/2siny+sqrt3/2cosy

Explanation:

We use the formulas cos(A-B)=cosAcosB+sinAsinB and

sin(A+B)=sinAcosB+cosAsinB

Hence cos(y-pi)+sin(y+pi/3)

= cosycospi+sinysinpi+sinycos(pi/3)+cosysin(pi/3)

As cospi=-1, sinpi=0, cos(pi/3)=1/2 and sin(pi/3)=sqrt3/2

cosycospi+sinysinpi+sinycos(pi/3)+cosysin(pi/3)

= cosyxx(-1)+sinyxx0+sinyxx1/2+cosyxxsqrt3/2

= -cosy+1/2siny+sqrt3/2cosy

Apr 18, 2016

Perhaps, the solution is required.
If so, #y = kpi+pi/12, k = 0. +-1, +-2, +-3...

Explanation:

cos (y-pi)=cos(pi-y)=-cos y
sin (y+pi/3)= sin y cos (pi/3) + cos y sin (pi/3)=(1/2)(sin y + sqrt 3 cos y)

So, the given equation becomes
sin y = (2-sqrt3) cos y
tan y = 2-sqrt 3
The principal value of y = pi/12.
General value of y = kpi+pi/12, k = 0. +-1, +-2, +-3...