How do you rewrite cos 3theta in terms of only costheta and sintheta?
1 Answer
Since
\mathbf(sin(upmv) = sinucosv pm cosusinv)
\mathbf(cos(upmv) = cosucosv ∓ sinusinv)
Thus:
cos3theta
= cos(theta+2theta)
= costhetacolor(red)(cos2theta) - sinthetacolor(red)(sin2theta)
Next, we still have
So, we have to rewrite
color(green)(cos(theta+theta)) = costhetacostheta - sinthetasintheta
= color(green)(cos^2theta - sin^2theta)
color(green)(sin(theta+theta)) = sinthetacostheta + costhetasintheta
= color(green)(2sinthetacostheta)
Thus, we end up with:
color(blue)(cos3theta)
= costheta(color(green)(cos^2theta - sin^2theta)) - sintheta(color(green)(2sinthetacostheta))
= cos^3theta - sin^2thetacostheta - 2sin^2thetacostheta
= color(blue)(cos^3theta - 3sin^2thetacostheta)