Question #5adb3

1 Answer
Sep 20, 2016

Alternative I :-

-{2cosx+ln|cscx-cotx|+C.

Alternative II :-

1/4(2x-sin2x)-ln|cscx-cotx|-cosx+C

Explanation:

Though the Question is not clear, but we solve it by taking 2 possibilities :

Alternative I :-

int(sin^2x-cos^2x)/sinx dx=int{(sin^2x-(1-sin^2x)}/sinxdx

=int(2sin^2x-1)/sinx dx=int{(2sin^2x)/sinx-1/sinx}dx

=2intsinxdx-intcscxdx

=2(-cosx)-ln|cscx-cotx|

=-{2cosx+ln|cscx-cotx|+C.

Alternative II :-

int{sin^2x-cos^2x/sinx}dx

We use the Identity : sin^2x=(1-cos2x)/2.

:. int{sin^2x-cos^2x/sinx}dx

=int(1-cos2x)/2dx-int(1-sin^2x)/sinxdx

1/2(x-sin(2x)/2)-int(1/sinx-sinx)dx

=1/4(2x-sin2x)-intcscxdx+intsinxdx

=1/4(2x-sin2x)-ln|cscx-cotx|-cosx+C

Enjoy Maths.!