Question #312ef

1 Answer
Sep 11, 2016

(10e)^x/(ln(10)+1)+e^(x+1)+C

Explanation:

Expanding the integral, it becomes:

=inte^x10^xdx+inte^(x+1)dx

First working with the second integral, let u=x+1 so du=dx:

=inte^x10^x+inte^udu

=inte^x10^x+e^u

=inte^x10^x+e^(x+1)

For the remaining integral, rewrite as follows:

=int(10e)^xdx+e^(x+1)

Notice that 10e is just a constant. Use the rule: inta^xdx=a^x/ln(a)+C

=(10e)^x/ln(10e)+e^(x+1)

Note that ln(10e)=ln(10)+ln(e)=ln(10)+1:

=(10e)^x/(ln(10)+1)+e^(x+1)+C