Evaluate the limit? : lim_(x rarr oo)(3x+1)/(|x|+2)

1 Answer
Nov 30, 2016

lim_(x rarr oo)(3x+1)/(|x|+2) = 3

Explanation:

As x rarr oo => x>0 so:
\ \ \ \ \ lim_(x rarr oo)(3x+1)/(|x|+2) = lim_(x rarr oo)(3x+1)/(x+2)
:. lim_(x rarr oo)(3x+1)/(|x|+2) = lim_(x rarr oo)(3x+1)/(x+2)*(1/x)/(1/x)
:. lim_(x rarr oo)(3x+1)/(|x|+2) = lim_(x rarr oo)((3x+1)/x)/((x+2)/x)
:. lim_(x rarr oo)(3x+1)/(|x|+2) = lim_(x rarr oo)(3+1/x)/(1+2/x)

As x rarr 8 => 1/x rarr 0 , Hence
\ \ \ \ \ lim_(x rarr oo)(3x+1)/(|x|+2) = (3+0)/(1+0) = 3

We can verify this by looking at the graph of y=(3x+1)/(|x|+2)

graph{(3x+1)/(|x|+2) [-5, 20, -3.5, 3.5]}