As cos2A=2cos^2A-1
cos(2xxpi/12)=2cos^2(pi/12)-1
or cos(pi/6)=sqrt3/2=2cos^2(pi/12)-1
or 2cos^2(pi/12)-1-sqrt3/2=0
or 2cos^2(pi/12)-(2+sqrt3)/2=0
or cos^2(pi/12)=(2+sqrt3)/4
and cos(pi/12)=sqrt(2+sqrt3)/2=sqrt(4+2sqrt3)/(2sqrt2)
= sqrt(3+1+2sqrt3)/(2sqrt2)
= sqrt((sqrt3)^2+1^2+2xxsqrt3xx1)/(2sqrt2)
= (sqrt3+1)/(2sqrt2)
Further cos2A=1-2sin^2A
cos(pi/6)=1-2sin^2(pi/12)
or sqrt3/2=1-2sin^2(pi/12)
or 2sin^2(pi/12)=1-sqrt3/2
or sin^2(pi/12)=(2-sqrt3)/4
or sin(pi/12)=(sqrt(2-sqrt3)/2
= sqrt(4-2sqrt3)/(2sqrt2)
= sqrt(3+1-2sqrt3)/(2sqrt2)
= sqrt((sqrt3)^2+1^2-2xxsqrt3xx1)/(2sqrt2)
= (sqrt3-1)/(2sqrt2)