Find the exact value of sin(pi/12) and cos(pi/12)?

1 Answer
Oct 1, 2016

sin(pi/12)=(sqrt3-1)/(2sqrt2)

cos(pi/12)=(sqrt3+1)/(2sqrt2)

Explanation:

As cos2A=2cos^2A-1

cos(2xxpi/12)=2cos^2(pi/12)-1

or cos(pi/6)=sqrt3/2=2cos^2(pi/12)-1

or 2cos^2(pi/12)-1-sqrt3/2=0

or 2cos^2(pi/12)-(2+sqrt3)/2=0

or cos^2(pi/12)=(2+sqrt3)/4

and cos(pi/12)=sqrt(2+sqrt3)/2=sqrt(4+2sqrt3)/(2sqrt2)

= sqrt(3+1+2sqrt3)/(2sqrt2)

= sqrt((sqrt3)^2+1^2+2xxsqrt3xx1)/(2sqrt2)

= (sqrt3+1)/(2sqrt2)

Further cos2A=1-2sin^2A

cos(pi/6)=1-2sin^2(pi/12)

or sqrt3/2=1-2sin^2(pi/12)

or 2sin^2(pi/12)=1-sqrt3/2

or sin^2(pi/12)=(2-sqrt3)/4

or sin(pi/12)=(sqrt(2-sqrt3)/2

= sqrt(4-2sqrt3)/(2sqrt2)

= sqrt(3+1-2sqrt3)/(2sqrt2)

= sqrt((sqrt3)^2+1^2-2xxsqrt3xx1)/(2sqrt2)

= (sqrt3-1)/(2sqrt2)