What is the general solution of trigonometric equation sec^2theta+1-3tantheta=0sec2θ+13tanθ=0?

1 Answer
Oct 6, 2016

theta=npi+pi/4θ=nπ+π4

or theta=npi+tan^(-1)2θ=nπ+tan12

Explanation:

As sec^2theta=1+tan^2thetasec2θ=1+tan2θ,

sec^2theta+1-3tantheta=0sec2θ+13tanθ=0 can be written as

1+tan^2theta+1-3tantheta=01+tan2θ+13tanθ=0

or tan^2theta-3tantheta+2=0tan2θ3tanθ+2=0

or tan^2theta-2tantheta-tantheta+2=0tan2θ2tanθtanθ+2=0

or tantheta(tantheta-2)-1(tantheta-2)=0tanθ(tanθ2)1(tanθ2)=0

or (tantheta-1)(tantheta-2)=0(tanθ1)(tanθ2)=0

i.e. either tantheta-1=0tanθ1=0 or tantheta-2=0tanθ2=0

hence, either tantheta=1tanθ=1 or tantheta=2tanθ=2

i.e. theta=npi+pi/4θ=nπ+π4

or theta=npi+tan^(-1)2θ=nπ+tan12 i.e. theta=npi+tan^(-1)2θ=nπ+tan12 (in radians using calculator).