sec^2theta+1-3tantheta=0sec2θ+1−3tanθ=0
=>1+tan^2theta+1-3tantheta=0⇒1+tan2θ+1−3tanθ=0
=>tan^2theta-3tantheta+2=0⇒tan2θ−3tanθ+2=0
=>tan^2theta-2tantheta-tantheta+2=0⇒tan2θ−2tanθ−tanθ+2=0
=>(tantheta-2)tantheta-1(tantheta-2)=0⇒(tanθ−2)tanθ−1(tanθ−2)=0
=>(tantheta-2)(tantheta-1)=0⇒(tanθ−2)(tanθ−1)=0
So
when tantheta=2=tantan^-1(2)=tanalphatanθ=2=tantan−1(2)=tanα
=>theta=npi+alpha." where "n inZZ
when tantheta=1=tan(pi/4)
=>theta=npi+pi/4" where "n in ZZ