How do you prove that tan2x=csc2xtan2x1?

1 Answer
Oct 16, 2016

Apply the identities tanθ=sinθcosθ and cscθ=1sinθ.

sin2xcos2x=1sin2x×sin2xcos2x1

sin2xcos2x=1cos2x1

sin2xcos2x=1cos2xcos2xcos2x

Apply the identity 1cos2x=sin2x (sin2x+cos2x=1).

sin2xcos2x=sin2xcos2x

LHS=RHS

Hopefully this helps!