If sinu=-4/5 and pi < u < (3pi)/2, find sin2u,cos2u and tan2u? Trigonometry Trigonometric Identities and Equations Double Angle Identities 1 Answer Shwetank Mauria Aug 22, 2017 sin2u=24/25, cos2u=-7/25 and tan2u=-24/7 Explanation: As pi < u < (3pi)/2, u is in Q3 and cosu<0. As sinu=-4/5, cosu=-sqrt(1-(-4/5)^2)=-3/5 Hence, sin2u=2sinucosu=2xx(-4/5)xx(-3/5)=24/25 cos2u=cos^2u-sin^2u=9/25-16/25=-7/25 and tan2u=(sin2u)/(cos2u)=(24/25)/(-7/25)=-24/7 Answer link Related questions What are Double Angle Identities? How do you use a double angle identity to find the exact value of each expression? How do you use a double-angle identity to find the exact value of sin 120°? How do you use double angle identities to solve equations? How do you find all solutions for sin 2x = cos x for the interval [0,2pi]? How do you find all solutions for 4sinthetacostheta=sqrt(3) for the interval [0,2pi]? How do you simplify cosx(2sinx + cosx)-sin^2x? If tan x = 0.3, then how do you find tan 2x? If sin x= 5/3, what is the sin 2x equal to? How do you prove cos2A = 2cos^2 A - 1? See all questions in Double Angle Identities Impact of this question 12867 views around the world You can reuse this answer Creative Commons License