Question #920f7

1 Answer
Aug 10, 2017

d/(dx) [-csc^2x] = color(blue)(2cotxcsc^2xddx[csc2x]=2cotxcsc2x

Explanation:

We're asked to find the derivative

d/(dx) [-csc^2x]ddx[csc2x]

Let's first use the chain rule:

d/(dx) [-csc^2x] = -d/(du) [u^2] (du)/(dx)ddx[csc2x]=ddu[u2]dudx

where

  • u = cscxu=cscx

  • d/(dx) [u^2] = 2uddx[u2]=2u:

= -2cscxd/(dx)[cscx]=2cscxddx[cscx]

The derivative of cscxcscx is -cotxcscxcotxcscx:

= -2cscx(-cotxcscx)=2cscx(cotxcscx)

Or

= color(blue)(ulbar(|stackrel(" ")(" "2cotxcsc^2x" ")|)