Question #920f7
1 Answer
Aug 10, 2017
Explanation:
We're asked to find the derivative
d/(dx) [-csc^2x]ddx[−csc2x]
Let's first use the chain rule:
d/(dx) [-csc^2x] = -d/(du) [u^2] (du)/(dx)ddx[−csc2x]=−ddu[u2]dudx
where
-
u = cscxu=cscx -
d/(dx) [u^2] = 2uddx[u2]=2u :
= -2cscxd/(dx)[cscx]=−2cscxddx[cscx]
The derivative of
= -2cscx(-cotxcscx)=−2cscx(−cotxcscx)
Or
= color(blue)(ulbar(|stackrel(" ")(" "2cotxcsc^2x" ")|)