Question #02bba

1 Answer
Nov 2, 2016

Given 0< u< pi/2 and tanu=5/3

we get u=tan^-1(5/3)~~59^@

So 2u=118^@->"In 2nd quadrant"

Hence sin2u->"+ve"

But tan2u and cos 2u ->"-ve"

Now

sin2u=(2tanu)/(1+tan^2u)

=>sin2u=(2xx5/3)/(1+(5/3)^2)=10/3xx9/34=15/17

cos2u=-(1-tan^2u)/(1+tan^2u)

=>cos2u=(1-(5/3)^2)/(1+(5/3)^2

=>cos2u=-16/9xx9/34-8/17

tan2u=(2tanu)/(1-tan^2u)

=>tan2u=(2xx5/3)/(1-(5/3)^2)=-10/3xx9/16=-15/8