Given 0< u< pi/2 and tanu=5/3
we get u=tan^-1(5/3)~~59^@
So 2u=118^@->"In 2nd quadrant"
Hence sin2u->"+ve"
But tan2u and cos 2u ->"-ve"
Now
sin2u=(2tanu)/(1+tan^2u)
=>sin2u=(2xx5/3)/(1+(5/3)^2)=10/3xx9/34=15/17
cos2u=-(1-tan^2u)/(1+tan^2u)
=>cos2u=(1-(5/3)^2)/(1+(5/3)^2
=>cos2u=-16/9xx9/34-8/17
tan2u=(2tanu)/(1-tan^2u)
=>tan2u=(2xx5/3)/(1-(5/3)^2)=-10/3xx9/16=-15/8