Question #9c7b3

2 Answers
Nov 25, 2016

sin3x=3sinxsin(3x)4

Explanation:

If you know the de Moivre's identity it is quite direct.

eix=cosx+isinx

so

e3ix=(cosx+isinx)3=cos(3x)+isin(3x)

or

cos3x+3icos2xsinx3cosxsin2xisin3x=cos(3x)+isin(3x)

grouping the real and the imaginary parts,

cos3x3cosxsin2x=cos(3x) and
3cos2xsinxsin3x=sin(3x)

now, using the identity

cos2x+sin2x=1 we will get at

sin(3x)=3sinx(1sin2x)sin3x or

sin3x=3sinxsin(3x)4

Nov 25, 2016

Expand sin3x

Explanation:

There is another simpler method.
Use the trig identity:
sin3x=3sinx4sin3x
By transposing terms, we get:
4sin3x=3sinxsin3x
sin3x=3sinxsin3x4