lim_(xrarr0)(e^(2x)+x)^(1//x)= ?
2 Answers
Explanation:
L=lim_(xrarr0)(e^(2x)+x)^(1//x)
To undo powers like this in limits, take the natural logarithm of both sides.
ln(L)=ln(lim_(xrarr0)(e^(2x)+x)^(1//x))
The logarithm, being a continuous function, can be moved inside the limit.
ln(L)=lim_(xrarr0)ln((e^(2x)+x)^(1//x))
Move the power outside of the logarithm using log rules.
ln(L)=lim_(xrarr0)ln(e^(2x)+x)/x
Notice that as
ln(L)=lim_(xrarr0)(d/dx(ln(e^(2x)+x)))/(d/dx(x))
ln(L)=lim_(xrarr0)((2e^(2x)+1)/(e^(2x)+x))/1
ln(L)=lim_(xrarr0)(2e^(2x)+1)/(e^(2x)+x)
We can now evaluate the limit.
ln(L)=(2e^0+1)/(e^0+0)
ln(L)=(2+1)/1
ln(L)=3
L=e^3
Explanation:
Now