lim_(xrarr0)(e^(2x)+x)^(1//x)= ?

2 Answers
Nov 25, 2016

lim_(xrarr0)(e^(2x)+x)^(1//x)=e^3

Explanation:

L=lim_(xrarr0)(e^(2x)+x)^(1//x)

To undo powers like this in limits, take the natural logarithm of both sides.

ln(L)=ln(lim_(xrarr0)(e^(2x)+x)^(1//x))

The logarithm, being a continuous function, can be moved inside the limit.

ln(L)=lim_(xrarr0)ln((e^(2x)+x)^(1//x))

Move the power outside of the logarithm using log rules.

ln(L)=lim_(xrarr0)ln(e^(2x)+x)/x

Notice that as xrarr0, we have this limit in the indeterminate form 0/0. That means L'Hospital's rule applies, and we can take the derivatives of the numerator and denominator separately in the limit.

ln(L)=lim_(xrarr0)(d/dx(ln(e^(2x)+x)))/(d/dx(x))

ln(L)=lim_(xrarr0)((2e^(2x)+1)/(e^(2x)+x))/1

ln(L)=lim_(xrarr0)(2e^(2x)+1)/(e^(2x)+x)

We can now evaluate the limit.

ln(L)=(2e^0+1)/(e^0+0)

ln(L)=(2+1)/1

ln(L)=3

L=e^3

Nov 25, 2016

e^3

Explanation:

(e^(2x)+x)^(1/x)= e^2(1+x/e^(2x))^(1/x) now, making y = x/e^(2x)
(e^(2x)+x)^(1/x)=e^2(1+y)^(1/(y e^(2x))) = e^2((1+y)^(1/y))^(1/(e^(2x)))

Now lim_(x->0) =>lim_(y(x)->0) so

lim_(x->0)(e^(2x)+x)^(1/x)=e^2lim_(x->0)(lim_(y->0)(1+y)^(1/y))^(1/e^(2x))=e^2 xx e=e^3