What is lim_(x->0) ((1+x)^n-1)/x ?

1 Answer
Nov 4, 2017

lim_(x->0) ((1+x)^n-1)/x =n

Explanation:

If we assume the question was: lim_(x->0) ((1+x)^n-1)/x

We have an indeterminate limit of the form 0/0

Hence, L'Hopital's rule applies.

:.lim_(x->0) ((1+x)^n-1)/x = lim_(x->0) (d/dx((1+x)^n-1))/(d/dx(x))

= lim_(x->0) (n(1+x)^(n-1)xx1 -0)/1 [Power rule and chain rule]

= lim_(x->0) n(1+x)^(n-1)

= nxx1^(n-1)= n